Google Tensor G2 Benchmark, Test and specs

Last updated:
The Google Tensor G2 has 8 cores with 8 threads and is based on the 2. gen of the Google Tensor series. The processor was released in Q4/2022. The Google Tensor G2 scores 1,068 points in the Geekbench 5 single-core benchmark. In the Geekbench 5 multi-core benchmark, the result is 3,149 points.
Google Tensor G2

CPU lineage

The segment in which we have classified the Google Tensor G2. Here you can see if it is a desktop processor or a mobile processor or which processor may be the successor of the Google Tensor G2.

Name: Google Tensor G2
Family: Google Tensor (3)
CPU group: Google Tensor G2 (1)
Architecture: G2
Segment: Mobile
Generation: 2
Predecessor: Google Tensor
Successor: --

CPU Cores and Base Frequency

The Google Tensor G2 has 8 CPU cores and can calculate 8 threads in parallel. The clock frequency of the Google Tensor G2 is 2.85 GHz. The number of CPU cores greatly affects the speed of the processor and is an important performance indicator.

CPU Cores / Threads: 8 / 8
Core architecture: hybrid (Prime / big.LITTLE)
A-Core: 2x Cortex-X1
B-Core: 2x Cortex-A78
C-Core: 4x Cortex-A55
Hyperthreading / SMT: No
Overclocking: No
A-Core Frequency: 2.85 GHz
B-Core Frequency: 2.35 GHz
C-Core Frequency: 1.80 GHz

Artificial Intelligence and Machine Learning

Processors with the support of artificial intelligence (AI) and machine learning (ML) can process many calculations, especially audio, image and video processing, much faster than classic processors. Algorithms for ML improve their performance the more data they have collected via software. ML tasks can be processed up to 10,000 times faster than with a classic processor.

AI hardware: Google Tensor AI
AI specifications: Google Edge TPU @ 4 TOPS

Internal Graphics

The Google Tensor G2 has integrated graphics, called iGPU for short. Specifically, the Google Tensor G2 uses the ARM Mali-G710 MP7, which has -- texture shaders and 7 execution units. The iGPU uses the system's main memory as graphics memory and sits on the processor's die.

GPU name: ARM Mali-G710 MP7
GPU frequency: 0.90 GHz
GPU (Turbo): No turbo
Compute units: 7
Shader: --
Hardware Raytracing: No
Release date: Q2/2021
Max. displays: 1
Generation: Vallhall 3
Direct X: 12
Technology: 4 nm
Max. GPU Memory: --
Frame Generation: No

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.

h265 / HEVC (8 bit): Decode / Encode
h265 / HEVC (10 bit): Decode / Encode
h264: Decode / Encode
VP8: Decode / Encode
VP9: Decode / Encode
AV1: Decode
AVC: Decode / Encode
VC-1: Decode / Encode
JPEG: Decode / Encode

Memory & PCIe

The processor can use up to 12 GB memory in 2 (Dual Channel) memory channels. The maximum memory bandwidth is 53.0 GB/s. The memory type as well as the amount of memory can greatly affect the speed of the system.

Memory type: Memory bandwidth:
LPDDR5-5500
53.0 GB/s
Max. Memory: 12 GB
Memory channels: 2 (Dual Channel)
ECC: No
PCIe:
PCIe Bandwidth: --

Thermal Management

The thermal design power (TDP for short) of the processor is 10 W. The TDP specifies the necessary cooling solution that is required to cool the processor sufficiently. The TDP usually gives a rough idea of the actual power consumption of the CPU.

TDP (PL1 / PBP): 10 W
TDP (PL2): --
TDP up: --
TDP down: --
Tjunction max.: --

Technical details

The Google Tensor G2 is made in 4 nm. The smaller the manufacturing process of a CPU, the more modern and energy-efficient it is. Overall, the processor has 12.00 MB cache. A large cache can greatly speed up the processor's speed in some cases such as games.

Technology: 4 nm
Chip design: Chiplet
Socket: --
L2-Cache: 8.00 MB
L3-Cache: 4.00 MB
AES-NI: No
Operating systems: Android
Virtualization: None
Instruction set (ISA): Armv8-A (64 bit)
ISA extensions: --
Release date: Q4/2022
Release price: --
Part Number: --
Documents: --

Rate this processor

Here you can rate this processor to help other visitors make their purchase decision. The average rating of this processor is 3.9 stars (7 ratings). Rate now:

Benchmark results

Verified Benchmark results
The benchmark results for the Google Tensor G2 have been carefully checked by us. We only publish benchmark results that have been created by us or that have been submitted by a visitor and then checked by a team member. All results are based on and fullfill our benchmark guidelines.

Screenshots:

Geekbench 5, 64bit (Single-Core)

Geekbench 5 is a cross plattform benchmark that heavily uses the systems memory. A fast memory will push the result a lot. The single-core test only uses one CPU core, the amount of cores or hyperthreading ability doesn't count.
Intel Core i3-9100 Intel Core i3-9100
4C 4T @ 4.20 GHz
1069
Intel Core i7-8650U Intel Core i7-8650U
4C 8T @ 4.20 GHz
1069
Intel Xeon E3-1225 v6 Intel Xeon E3-1225 v6
4C 4T @ 3.70 GHz
1069
Google Tensor G2 Google Tensor G2
8C 8T @ 2.85 GHz
1068
Intel Core i5-10600T Intel Core i5-10600T
6C 12T @ 4.00 GHz
1068
Intel Xeon E3-1225 v5 Intel Xeon E3-1225 v5
4C 4T @ 3.70 GHz
1068
Intel Core i5-10210U Intel Core i5-10210U
4C 8T @ 4.20 GHz
1067

Geekbench 5, 64bit (Multi-Core)

Geekbench 5 is a cross plattform benchmark that heavily uses the systems memory. A fast memory will push the result a lot. The multi-core test involves all CPU cores and taks a big advantage of hyperthreading.
Intel Core i5-6600 Intel Core i5-6600
4C 4T @ 3.60 GHz
3167
Intel Xeon D-1521 Intel Xeon D-1521
4C 8T @ 2.40 GHz
3163
AMD Ryzen 7 3750H AMD Ryzen 7 3750H
4C 8T @ 3.50 GHz
3155
Google Tensor G2 Google Tensor G2
8C 8T @ 2.85 GHz
3149
Intel Core i7-4790T Intel Core i7-4790T
4C 8T @ 3.20 GHz
3148
Intel Xeon E3-1226 v3 Intel Xeon E3-1226 v3
4C 4T @ 3.30 GHz
3144
Intel Core i7-3770S Intel Core i7-3770S
4C 8T @ 3.10 GHz
3143

Geekbench 6 (Single-Core)

Geekbench 6 is a benchmark for modern computers, notebooks and smartphones. What is new is an optimized utilization of newer CPU architectures, e.g. based on the big.LITTLE concept and combining CPU cores of different sizes. The single-core benchmark only evaluates the performance of the fastest CPU core, the number of CPU cores in a processor is irrelevant here.
Intel Xeon W-2175 Intel Xeon W-2175
14C 28T @ 4.30 GHz
1428
Intel Core i5-9500 Intel Core i5-9500
6C 6T @ 4.40 GHz
1427
Intel Core i5-9500F Intel Core i5-9500F
6C 6T @ 4.40 GHz
1427
Google Tensor G2 Google Tensor G2
8C 8T @ 2.85 GHz
1426
Intel Core i3-8350K Intel Core i3-8350K
4C 4T @ 4.00 GHz
1426
Intel Xeon W-2135 Intel Xeon W-2135
6C 12T @ 4.50 GHz
1422
Intel Xeon W-2195 Intel Xeon W-2195
18C 36T @ 4.30 GHz
1422

Geekbench 6 (Multi-Core)

Geekbench 6 is a benchmark for modern computers, notebooks and smartphones. What is new is an optimized utilization of newer CPU architectures, e.g. based on the big.LITTLE concept and combining CPU cores of different sizes. The multi-core benchmark evaluates the performance of all of the processor's CPU cores. Virtual thread improvements such as AMD SMT or Intel's Hyper-Threading have a positive impact on the benchmark result.
Intel Core i7-1060G7 Intel Core i7-1060G7
4C 8T @ 2.60 GHz
3360
Intel Core i5-4670 Intel Core i5-4670
4C 4T @ 3.60 GHz
3349
Intel Core i5-7400 Intel Core i5-7400
4C 4T @ 3.30 GHz
3346
Google Tensor G2 Google Tensor G2
8C 8T @ 2.85 GHz
3342
Intel Core i7-5700HQ Intel Core i7-5700HQ
4C 8T @ 3.20 GHz
3342
Samsung Exynos 2100 Samsung Exynos 2100
8C 8T @ 2.90 GHz
3339
Intel Core i7-4810MQ Intel Core i7-4810MQ
4C 8T @ 3.70 GHz
3339

iGPU - FP32 Performance (Single-precision GFLOPS)

The theoretical computing performance of the internal graphics unit of the processor with simple accuracy (32 bit) in GFLOPS. GFLOPS indicates how many billion floating point operations the iGPU can perform per second.
AMD A10-7800 AMD A10-7800
AMD Radeon R7 - 512 (Kaveri) @ 0.72 GHz
702
AMD A10-7850K AMD A10-7850K
AMD Radeon R7 - 512 (Kaveri) @ 0.72 GHz
702
AMD A8-7600 AMD A8-7600
AMD Radeon R7 - 512 (Kaveri) @ 0.72 GHz
702
Google Tensor G2 Google Tensor G2
ARM Mali-G710 MP7 @ 0.90 GHz
700
Intel Core i3-1000NG4 Intel Core i3-1000NG4
Intel Iris Plus Graphics G4 @ 0.90 GHz
691
Intel Core i3-1000G4 Intel Core i3-1000G4
Intel Iris Plus Graphics G4 @ 0.90 GHz
691
Intel Core i5-12600HX Intel Core i5-12600HX
Intel UHD Graphics 770 @ 1.35 GHz
691

AnTuTu 9 Benchmark

The AnTuTu 9 benchmark is very well suited to measuring the performance of a smartphone. AnTuTu 9 is quite heavy on 3D graphics and can now also use the "Metal" graphics interface. In AnTuTu, memory and UX (user experience) are also tested by simulating browser and app usage. AnTuTu version 9 can compare any ARM CPU running on Android or iOS. Devices may not be directly comparable when benchmarked on different operating systems.

In the AnTuTu 9 benchmark, the single-core performance of a processor is only slightly weighted. The rating is made up of the multi-core performance of the processor, the speed of the working memory, and the performance of the internal graphics.
Qualcomm Snapdragon 888 Qualcomm Snapdragon 888
8C 8T @ 2.84 GHz
816812
MediaTek Dimensity 8100 MediaTek Dimensity 8100
8C 8T @ 2.85 GHz
811000
Apple A15 Bionic (4-GPU) Apple A15 Bionic (4-GPU)
6C 6T @ 3.23 GHz
806250
Google Tensor G2 Google Tensor G2
8C 8T @ 2.85 GHz
789419
Apple A12Z Bionic Apple A12Z Bionic
8C 8T @ 2.49 GHz
779044
Apple A14 Bionic Apple A14 Bionic
6C 6T @ 3.00 GHz
729968
Qualcomm Snapdragon 870 Qualcomm Snapdragon 870
8C 8T @ 3.20 GHz
727650

Performance for Artificial Intelligence (AI) and Machine Learning (ML)

Processors with the support of artificial intelligence (AI) and machine learning (ML) can process many calculations, especially audio, image and video processing, much faster than classic processors. The performance is given in the number (trillions) of arithmetic operations per second (TOPS).
MediaTek Dimensity 1000 MediaTek Dimensity 1000
8C 8T @ 2.60 GHz
4.5
MediaTek Dimensity 1000C MediaTek Dimensity 1000C
8C 8T @ 2.00 GHz
4.5
MediaTek Dimensity 1000L MediaTek Dimensity 1000L
8C 8T @ 2.20 GHz
4.5
Google Tensor G2 Google Tensor G2
8C 8T @ 2.85 GHz
4
Qualcomm Snapdragon 732G Qualcomm Snapdragon 732G
8C 8T @ 2.30 GHz
3.6
Qualcomm Snapdragon 730G Qualcomm Snapdragon 730G
8C 8T @ 2.20 GHz
3.6
Qualcomm Snapdragon 730 Qualcomm Snapdragon 730
8C 8T @ 2.20 GHz
3.6

Benchmarks


Description of the processor

The Google Tensor G2 is a smartphone processor developed by Google that is used exclusively in the Google Pixel 7 and Google Pixel 7 Pro from Google. The CPU has 8 CPU cores and uses a hybrid core structure. The special feature is that the Google Tensor G2 does not have one very high-clocked Prime core, but two.

The Prime cores use ARMs Cortex-X1 design and clock at up to 2.85 GHz. They are supplemented by two Cortex-A78s that clock at 2.35 GHz. There are also four additional Cortex-A55 energy-saving cores that only work at 1.8 GHz, but are particularly energy efficient. In mobile devices, this can extend battery life because the larger CPU cores are put into a standby state and are only used when they are needed.

When it comes to AI acceleration, the Google Tensor G2 can rely on the Google Edge TPU with an AI computing power of up to 4 TOPS. The Google Edge TPU accelerates, for example, camera functions, image and video processing. AI acceleration can also help ensure that the CPU cores are required as little as possible.

The Google Tensor G2 uses an ARM Mali-G710 MP7 as the graphics card. With a theoretical GPU computing power of 0.7 TFLOPS, this is quite suitable for playing most smartphone games smoothly.

The Google Tensor G2 supports up to 12 GB of DDR5-5500 memory with a maximum memory bandwidth of up to 53 GB/s. This memory bandwidth is pretty good for a smartphone and is on par with many notebooks.

Google does not directly specify the TDP of the Google Tensor G2, so based on the energy consumption and clock frequencies we estimate the TDP to be 10 watts. This puts it in an area in which many modern smartphone processors work.



Popular comparisons

1. Qualcomm Snapdragon 8 Gen 1 Google Tensor G2 Qualcomm Snapdragon 8 Gen 1 vs Google Tensor G2
2. Qualcomm Snapdragon 888 Google Tensor G2 Qualcomm Snapdragon 888 vs Google Tensor G2
3. Google Tensor G3 Google Tensor G2 Google Tensor G3 vs Google Tensor G2
4. Google Tensor Google Tensor G2 Google Tensor vs Google Tensor G2
5. Qualcomm Snapdragon 7+ Gen 2 Google Tensor G2 Qualcomm Snapdragon 7+ Gen 2 vs Google Tensor G2
6. Google Tensor G2 Qualcomm Snapdragon 695 5G Google Tensor G2 vs Qualcomm Snapdragon 695 5G
7. Google Tensor G2 Qualcomm Snapdragon 865 Google Tensor G2 vs Qualcomm Snapdragon 865
8. Google Tensor G2 Apple A15 Bionic (5-GPU) Google Tensor G2 vs Apple A15 Bionic (5-GPU)
9. Qualcomm Snapdragon 8+ Gen 1 Google Tensor G2 Qualcomm Snapdragon 8+ Gen 1 vs Google Tensor G2
10. Google Tensor G2 Qualcomm Snapdragon 765G Google Tensor G2 vs Qualcomm Snapdragon 765G


back to index