Cinebench R23 is the successor of Cinebench R20 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The single-core test only uses one CPU core, the amount of cores or hyperthreading ability doesn't count.
Cinebench R23 is the successor of Cinebench R20 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The multi-core test involves all CPU cores and taks a big advantage of hyperthreading.
Cinebench R20 is the successor of Cinebench R15 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The single-core test only uses one CPU core, the amount of cores or hyperthreading ability doesn't count.
Cinebench R20 is the successor of Cinebench R15 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The multi-core test involves all CPU cores and taks a big advantage of hyperthreading.
Cinebench R15 is the successor of Cinebench 11.5 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The single-core test only uses one CPU core, the amount of cores or hyperthreading ability doesn't count.
Cinebench R15 is the successor of Cinebench 11.5 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The multi-core test involves all CPU cores and taks a big advantage of hyperthreading.
Geekbench 5 is a cross plattform benchmark that heavily uses the systems memory. A fast memory will push the result a lot. The single-core test only uses one CPU core, the amount of cores or hyperthreading ability doesn't count.
Geekbench 5 is a cross plattform benchmark that heavily uses the systems memory. A fast memory will push the result a lot. The multi-core test involves all CPU cores and taks a big advantage of hyperthreading.
V-Ray is a 3D rendering software from the manufacturer Chaos for designers and artists. Unlike many other render engines, V-Ray is capable of so-called hybrid rendering, in which the CPU and GPU work together at the same time.
However, the CPU benchmark we used (CPU Render Mode) only uses the system's processor. The working memory used plays a major role in the V-Ray benchmark. For our benchmarks we use the fastest RAM standard approved by the manufacturer (without overclocking).
Due to the high compatibility of V-Ray (including Autodesk 3ds Max, Maya, Cinema 4D, SketchUp, Unreal Engine and Blender), it is a frequently used software. With V-Ray, for example, photorealistic images can be rendered that laypeople cannot distinguish from normal photos.
The crypto currency Monero has been using the RandomX algorithm since November 2019. This PoW (proof of work) algorithm can only efficiently be calculated using a processor (CPU) or a graphics card (GPU). The CryptoNight algorithm was used for Monero until November 2019, but it could be calculated using ASICs. RandomX benefits from a high number of CPU cores, cache and a fast connection of the memory via as many memory channels as possible. Tested with
XMRig v6.x under the operation system HiveOS.
To trade Monero you can register with the crypto broker
Kraken.com. We've been customers there for a few years now and have been very satisfied so far.
The theoretical computing performance of the internal graphics unit of the processor with simple accuracy (32 bit) in GFLOPS. GFLOPS indicates how many billion floating point operations the iGPU can perform per second.
In the Blender Benchmark 3.1, the scenes "monster", "junkshop" and "classroom" are rendered and the time required by the system is measured. In our benchmark we test the CPU and not the graphics card. Blender 3.1 was presented as a standalone version in March 2022.
Some of the CPUs listed below have been benchmarked by CPU-monkey. However the majority of CPUs have not been tested and the results have been estimated by a CPU-monkey’s secret proprietary formula. As such they do not accurately reflect the actual Passmark CPU mark values and are not endorsed by PassMark Software Pty Ltd.
Blender is a free 3D graphics software for rendering (creating) 3D bodies, which can also be textured and animated in the software. The Blender benchmark creates predefined scenes and measures the time (s) required for the entire scene. The shorter the time required, the better. We selected bmw27 as the benchmark scene.
The benchmark comparison of the AMD Ryzen 9 5950X against the Intel Core i9-10900K is relatively one-sided. With its 16 cores (32 threads), the AMD Ryzen 9 5950X screws itself to a level of performance that the Intel Core i9-10900K with its 10 cores (20 threads) and a poorer raw performance per clock (IPC) simply cannot achieve.
The AMD Ryzen 9 5950X with its 16 cores is currently the spearhead of AMD's mainstream processors for the AM4 socket.
The AMD Ryzen 9 5950X is based on AMD's Zen 3 core design, which has major changes in cache management. In contrast to the previous architecture (Zen 2 or Ryzen 3xxx and Ryzen4xxG), AMD was able to increase the IPC by approx. 20 percent. Since AMD only increases the clock frequencies of the CPUs minimally in the same step, the new Zen 3 processors are also very efficient thanks to the optimized production in an improved 7 nm process.
Both processors support up to 128 GB according to the DDR4-3200 (AMD) or DDR4-2933 (Intel) standard. Manual overclocking or the use of memory overclocking profiles such as Intel XMP or AMD D.O.C.P. However, the maximum possible RAM clock frequency can also be increased beyond the manufacturer's recommendation. Both processors have two memory channels available to double the maximum memory bandwidth.
The AMD Ryzen 9 5950X can connect external devices such as graphics cards or fast SSDs via the new PCIe 4.0 standard, which has twice as high a bandwidth as PCIe 3.0. Intel does not yet support this new standard in the Intel Core i9-10900K, so that a lower performance is achieved here as well.
AMD classifies the AMD Ryzen 9 5950X with 105 watts, while Intel specifies the Intel Core i9-10900K with 125 watts. In reality, however, the AMD processor is much more efficient.
In our leaderboards, we have clearly compiled the best processors for specific categories for you. The leaderboards are always up to date and are regularly updated by us. The best processors are selected according to popularity and speed in benchmarks as well as the price-performance ratio.