Apple M3 Max (14-CPU 30-GPU) vs Apple M3 Pro (12-CPU 18-GPU)

Last updated:

CPU comparison with benchmarks


Apple M3 Max (14-CPU 30-GPU) CPU1 vs CPU2 Apple M3 Pro (12-CPU 18-GPU)
Apple M3 Max (14-CPU 30-GPU) Apple M3 Pro (12-CPU 18-GPU)

CPU comparison

In this CPU comparison, we compare the Apple M3 Max (14-CPU 30-GPU) and the Apple M3 Pro (12-CPU 18-GPU) and use benchmarks to check which processor is faster.

We compare the Apple M3 Max (14-CPU 30-GPU) 14 core processor released in Q4/2023 with the Apple M3 Pro (12-CPU 18-GPU) which has 12 CPU cores and was introduced in Q4/2023.
Apple M series (25) Family Apple M series (25)
Apple M3 (6) CPU group Apple M3 (6)
3 Generation 3
M3 Architecture M3
Mobile Segment Mobile
Apple M2 Max (30-GPU) Predecessor Apple M2 Pro (12-CPU 19-GPU)
-- Successor --

CPU Cores and Base Frequency

The Apple M3 Max (14-CPU 30-GPU) is a 14 core processor with a clock frequency of 0.70 GHz (4.06 GHz). The processor can compute 14 threads at the same time. The Apple M3 Pro (12-CPU 18-GPU) clocks with 0.70 GHz (4.06 GHz), has 12 CPU cores and can calculate 12 threads in parallel.

Apple M3 Max (14-CPU 30-GPU) Characteristic Apple M3 Pro (12-CPU 18-GPU)
14 Cores 12
14 Threads 12
hybrid (big.LITTLE) Core architecture hybrid (big.LITTLE)
No Hyperthreading No
No Overclocking ? No
0.70 GHz (4.06 GHz)
10x P-Core
A-Core 0.70 GHz (4.06 GHz)
6x P-Core
0.74 GHz (2.75 GHz)
4x E-Core
B-Core 0.74 GHz (2.75 GHz)
6x E-Core

Artificial Intelligence and Machine Learning

Processors with the support of artificial intelligence (AI) and machine learning (ML) can process many calculations, especially audio, image and video processing, much faster than classic processors. Algorithms for ML improve their performance the more data they have collected via software. ML tasks can be processed up to 10,000 times faster than with a classic processor.

Apple M3 Max (14-CPU 30-GPU) Characteristic Apple M3 Pro (12-CPU 18-GPU)
Apple Neural Engine AI hardware Apple Neural Engine
16 Neural cores @ 35 TOPS AI specifications 16 Neural cores @ 35 TOPS

Internal Graphics

Graphics (iGPU) integrated into the processor not only enable image output without having to rely on a dedicated graphics solution, but can also efficiently accelerate video playback.

Apple M3 Max (30 Core) GPU Apple M3 Pro (18 Core)
0.39 GHz GPU frequency 0.39 GHz
1.40 GHz GPU (Turbo) 1.40 GHz
-- GPU Generation --
3 nm Technology 3 nm
5 Max. displays 3
480 Compute units 288
3840 Shader 2304
Yes Hardware Raytracing Yes
No Frame Generation No
96 GB Max. GPU Memory 36 GB
-- DirectX Version --

Hardware codec support

A photo or video codec that is accelerated in hardware can greatly accelerate the working speed of a processor and extend the battery life of notebooks or smartphones when playing videos.

Apple M3 Max (30 Core) GPU Apple M3 Pro (18 Core)
Decode / Encode Codec h265 / HEVC (8 bit) Decode / Encode
Decode / Encode Codec h265 / HEVC (10 bit) Decode / Encode
Decode / Encode Codec h264 Decode / Encode
Decode / Encode Codec VP9 Decode / Encode
Decode Codec VP8 Decode
Decode Codec AV1 Decode
Decode Codec AVC Decode
Decode Codec VC-1 Decode
Decode / Encode Codec JPEG Decode / Encode

Memory & PCIe

Up to 96 GB of memory in a maximum of 3 memory channels is supported by the Apple M3 Max (14-CPU 30-GPU), while the Apple M3 Pro (12-CPU 18-GPU) supports a maximum of 36 GB of memory with a maximum memory bandwidth of 153.6 GB/s enabled.

Apple M3 Max (14-CPU 30-GPU) Characteristic Apple M3 Pro (12-CPU 18-GPU)
LPDDR5-6400 Memory LPDDR5-6400
96 GB Max. Memory 36 GB
3 Memory channels 2 (Dual Channel)
307.2 GB/s Max. Bandwidth 153.6 GB/s
No ECC No
36.00 MB L2 Cache 36.00 MB
-- L3 Cache --
4.0 PCIe version 4.0
-- PCIe lanes --
-- PCIe Bandwidth --

Thermal Management

The Apple M3 Max (14-CPU 30-GPU) has a TDP of 50 W. The TDP of the Apple M3 Pro (12-CPU 18-GPU) is 35 W. System integrators use the TDP of the processor as a guide when dimensioning the cooling solution.

Apple M3 Max (14-CPU 30-GPU) Characteristic Apple M3 Pro (12-CPU 18-GPU)
50 W TDP (PL1 / PBP) 35 W
-- TDP (PL2) --
-- TDP up --
-- TDP down --
100 °C Tjunction max. 100 °C

Technical details

The Apple M3 Max (14-CPU 30-GPU) has 36.00 MB cache and is manufactured in 3 nm. The cache of Apple M3 Pro (12-CPU 18-GPU) is at 36.00 MB. The processor is manufactured in 3 nm.

Apple M3 Max (14-CPU 30-GPU) Characteristic Apple M3 Pro (12-CPU 18-GPU)
3 nm Technology 3 nm
Chiplet Chip design Chiplet
Armv8-A (64 bit) Instruction set (ISA) Armv8-A (64 bit)
Rosetta 2 x86-Emulation ISA extensions Rosetta 2 x86-Emulation
-- Socket --
Apple Virtualization Framework Virtualization Apple Virtualization Framework
Yes AES-NI Yes
macOS, iPadOS Operating systems macOS, iPadOS
Q4/2023 Release date Q4/2023
-- Release price --
show more data show more data


Rate these processors

Here you can rate the Apple M3 Max (14-CPU 30-GPU) to help other visitors make their purchasing decisions. The average rating is 4.9 stars (140 ratings). Rate now:
Here you can rate the Apple M3 Pro (12-CPU 18-GPU) to help other visitors make their purchasing decisions. The average rating is 5.0 stars (214 ratings). Rate now:


Average performance in benchmarks

⌀ Single core performance in 4 CPU benchmarks
Apple M3 Max (14-CPU 30-GPU) (98%)
Apple M3 Pro (12-CPU 18-GPU) (100%)
⌀ Multi core performance in 4 CPU benchmarks
Apple M3 Max (14-CPU 30-GPU) (100%)
Apple M3 Pro (12-CPU 18-GPU) (76%)

Cinebench 2024 (Single-Core)

The Cinebench 2024 benchmark is based on the Redshift rendering engine, which is also used in Maxon's 3D program Cinema 4D. The benchmark runs are each 10 minutes long to test whether the processor is limited by its heat generation.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 4.06 GHz
141 (99%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 4.06 GHz
142 (100%)

Cinebench 2024 (Multi-Core)

The Multi-Core test of the Cinebench 2024 benchmark uses all cpu cores to render using the Redshift rendering engine, which is also used in Maxons Cinema 4D. The benchmark run is 10 minutes long to test whether the processor is limited by its heat generation.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 4.06 GHz
1373 (100%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 4.06 GHz
1059 (77%)

Cinebench R23 (Single-Core)

Cinebench R23 is the successor of Cinebench R20 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The single-core test only uses one CPU core, the amount of cores or hyperthreading ability doesn't count.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 4.06 GHz
1968 (100%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 4.06 GHz
1928 (98%)

Cinebench R23 (Multi-Core)

Cinebench R23 is the successor of Cinebench R20 and is also based on the Cinema 4 Suite. Cinema 4 is a worldwide used software to create 3D forms. The multi-core test involves all CPU cores and taks a big advantage of hyperthreading.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 3.60 GHz
20983 (100%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 3.80 GHz
15061 (72%)

Geekbench 5, 64bit (Single-Core)

Geekbench 5 is a cross plattform benchmark that heavily uses the systems memory. A fast memory will push the result a lot. The single-core test only uses one CPU core, the amount of cores or hyperthreading ability doesn't count.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 4.06 GHz
2150 (93%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 4.06 GHz
2314 (100%)

Geekbench 5, 64bit (Multi-Core)

Geekbench 5 is a cross plattform benchmark that heavily uses the systems memory. A fast memory will push the result a lot. The multi-core test involves all CPU cores and taks a big advantage of hyperthreading.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 3.60 GHz
20961 (100%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 3.80 GHz
15235 (73%)

Geekbench 6 (Single-Core)

Geekbench 6 is a benchmark for modern computers, notebooks and smartphones. What is new is an optimized utilization of newer CPU architectures, e.g. based on the big.LITTLE concept and combining CPU cores of different sizes. The single-core benchmark only evaluates the performance of the fastest CPU core, the number of CPU cores in a processor is irrelevant here.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 4.06 GHz
3125 (99%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 4.06 GHz
3152 (100%)

Geekbench 6 (Multi-Core)

Geekbench 6 is a benchmark for modern computers, notebooks and smartphones. What is new is an optimized utilization of newer CPU architectures, e.g. based on the big.LITTLE concept and combining CPU cores of different sizes. The multi-core benchmark evaluates the performance of all of the processor's CPU cores. Virtual thread improvements such as AMD SMT or Intel's Hyper-Threading have a positive impact on the benchmark result.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 3.60 GHz
19404 (100%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 3.80 GHz
15619 (80%)

iGPU - FP32 Performance (Single-precision GFLOPS)

The theoretical computing performance of the internal graphics unit of the processor with simple accuracy (32 bit) in GFLOPS. GFLOPS indicates how many billion floating point operations the iGPU can perform per second.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
Apple M3 Max (30 Core) @ 1.40 GHz
10650 (100%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
Apple M3 Pro (18 Core) @ 1.40 GHz
6390 (60%)

Performance for Artificial Intelligence (AI) and Machine Learning (ML)

Processors with the support of artificial intelligence (AI) and machine learning (ML) can process many calculations, especially audio, image and video processing, much faster than classic processors. The performance is given in the number (trillions) of arithmetic operations per second (TOPS).
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 0.70 GHz
35 (100%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 0.70 GHz
35 (100%)

Estimated results for PassMark CPU Mark

Some of the CPUs listed below have been benchmarked by CPU-monkey. However the majority of CPUs have not been tested and the results have been estimated by a CPU-monkey’s secret proprietary formula. As such they do not accurately reflect the actual Passmark CPU mark values and are not endorsed by PassMark Software Pty Ltd.
Apple M3 Max (14-CPU 30-GPU) Apple M3 Max (14-CPU 30-GPU)
14C 14T @ 3.60 GHz
0 (0%)
Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (12-CPU 18-GPU)
12C 12T @ 3.80 GHz
27304 (100%)

Devices using this processor

Apple M3 Max (14-CPU 30-GPU) Apple M3 Pro (12-CPU 18-GPU)
Apple MacBook Pro 14 (2023)
Apple MacBook Pro 16 (2023)
Apple MacBook Pro 14 (2023)
Apple MacBook Pro 16 (2023)

Popular comparisons containing this CPUs

1. Apple M3 Pro (11-CPU 14-GPU)Apple M3 Pro (12-CPU 18-GPU) Apple M3 Pro (11-CPU 14-GPU) vs Apple M3 Pro (12-CPU 18-GPU)
2. Apple M3 Pro (12-CPU 18-GPU)Intel Core i9-13900H Apple M3 Pro (12-CPU 18-GPU) vs Intel Core i9-13900H
3. Apple M3 Pro (12-CPU 18-GPU)Apple M1 Max (32-GPU) Apple M3 Pro (12-CPU 18-GPU) vs Apple M1 Max (32-GPU)
4. Apple M3 Max (14-CPU 30-GPU)Intel Core i9-14900K Apple M3 Max (14-CPU 30-GPU) vs Intel Core i9-14900K
5. Apple M3 Max (14-CPU 30-GPU)Apple M3 Max (16-CPU 40-GPU) Apple M3 Max (14-CPU 30-GPU) vs Apple M3 Max (16-CPU 40-GPU)
6. Apple M3 Max (14-CPU 30-GPU)Apple M2 Max (38-GPU) Apple M3 Max (14-CPU 30-GPU) vs Apple M2 Max (38-GPU)
7. Intel Core Ultra 9 185HApple M3 Max (14-CPU 30-GPU) Intel Core Ultra 9 185H vs Apple M3 Max (14-CPU 30-GPU)
8. Apple M3 Pro (12-CPU 18-GPU)Apple M2 Max (38-GPU) Apple M3 Pro (12-CPU 18-GPU) vs Apple M2 Max (38-GPU)
9. Apple M3 Pro (12-CPU 18-GPU)Apple M2 Pro (12-CPU 19-GPU) Apple M3 Pro (12-CPU 18-GPU) vs Apple M2 Pro (12-CPU 19-GPU)
10. Apple M3 Pro (12-CPU 18-GPU)Intel Core i7-13700H Apple M3 Pro (12-CPU 18-GPU) vs Intel Core i7-13700H


back to index