Intel Xeon Gold 6130 oder AMD EPYC 7351 - welcher Prozessor ist schneller ? In diesem Vergleich betrachten wir die Unterschiede und analysieren welche dieser beiden CPUs besser ist. Dabei vergleichen wir die technischen Daten und Benchmark-Ergebnisse.
Der Intel Xeon Gold 6130 besitzt 16 Kerne mit 32 Threads und taktet mit maximal 3,70 GHz. Es werden bis zu 768 GB Arbeitsspeicher in 6 Speicherkanälen unterstützt. Erschienen ist der Intel Xeon Gold 6130 im Q3/2017.
Der AMD EPYC 7351 besitzt 16 Kerne mit 32 Threads und taktet mit maximal 2,90 GHz. Die CPU unterstützt bis zu GB Arbeitsspeicher in 8 Speicherkanälen. Erschienen ist der AMD EPYC 7351 im Q3/2017.
Der Intel Xeon Gold 6130 besitzt 16 CPU-Kerne und kann 32 Threads parallel berechnen. Die Taktfrequenz des Intel Xeon Gold 6130 liegt bei 2,10 GHz (3,70 GHz) während der AMD EPYC 7351 16 CPU-Kerne besitzt und 32 Threads gleichzeitig berechnen kann. Die Taktfrequenz des AMD EPYC 7351 liegt bei 2,40 GHz (2,90 GHz).
Die Leistungswerte der KI-Einheit des Prozessors. Es wird hier die isolierte NPU Leistung angegeben, die gesamte KI-Leistung (NPU+CPU+iGPU) kann höher sein. Prozessoren mit Unterstützung von künstlicher Intelligenz (KI) und maschinellem Lernen (ML) können viele Berechnungen insbesondere der Audio-, Bild- und Videoverarbeitung sehr viel schneller verarbeiten als klassische Prozessoren.
Der Intel Xeon Gold 6130 oder AMD EPYC 7351 verfügt über eine integrierte Grafik, kurz iGPU genannt. Die iGPU nutzt den Arbeitsspeicher des Systems als Grafikspeicher und sitzt auf dem Die des Prozessors.
keine interne Grafik
GPU
keine interne Grafik
Grafik-Taktfrequenz
--
--
GPU (Turbo)
--
--
GPU Generation
--
Technologie
Max. Bildschirme
--
Ausführungseinheiten
--
--
Shader
--
Nein
Hardware Raytracing
Nein
Nein
Frame Generation
Nein
--
Max. GPU Speicher
--
--
DirectX Version
--
Codec-Unterstützung in Hardware
Ein in Hardware beschleunigter Foto- oder Videocodec kann die Arbeitsgeschwindigkeit eines Prozessors stark beschleunigen und die Akkulaufzeit von Notebooks oder Smartphones bei der Wiedergabe von Videos verlängern.
keine interne Grafik
GPU
keine interne Grafik
Nein
Codec h265 / HEVC (8 bit)
Nein
Nein
Codec h265 / HEVC (10 bit)
Nein
Nein
Codec h264
Nein
Nein
Codec VP9
Nein
Nein
Codec VP8
Nein
Nein
Codec AV1
Nein
Nein
Codec AVC
Nein
Nein
Codec VC-1
Nein
Nein
Codec JPEG
Nein
Arbeitsspeicher & PCIe
Der Intel Xeon Gold 6130 kann bis zu 768 GB Arbeitsspeicher in 6 Speicherkanälen nutzen. Die maximale Speicherbandbreite liegt bei 128,1 GB/s. Bis zu GB Arbeitsspeicher unterstützt der AMD EPYC 7351 in 8 Speicherkanälen und erreicht eine Speicherbandbreite von bis zu 170,6 GB/s.
Die Thermal Design Power (kurz TDP) des Intel Xeon Gold 6130 liegt bei 125 W, während der AMD EPYC 7351 eine TDP von 170 W besitzt. Die TDP gibt die notwendige Kühllösung vor, die benötigt wird um den Prozessor ausreichend zu kühlen.
Der Intel Xeon Gold 6130 wird in 14 nm gefertigt und verfügt über 22,00 MB Cache. Der AMD EPYC 7351 wird in 14 nm gefertigt und verfügt über einen 64,00 MB großen Cache.
Hier kannst Du den Intel Xeon Gold 6130 bewerten, um anderen Besuchern bei ihrer Kaufentscheidung zu helfen. Die durchschnittliche Bewertung liegt bei 5,0 Sternen (4 Bewertungen). Jetzt bewerten:
Hier kannst Du den AMD EPYC 7351 bewerten, um anderen Besuchern bei ihrer Kaufentscheidung zu helfen. Die durchschnittliche Bewertung liegt bei 5,0 Sternen (1 Bewertungen). Jetzt bewerten:
Geekbench 6 ist ein Teillast-Benchmark für moderne Computer, Notebooks und Smartphones. Im Einkern-Test wird nur der schnellste CPU-Kern gemessen. Der Testdurchlauf simuliert die Leistung in der Praxis.
Der Geekbench 5 Benchmark misst die Leistung des Prozessors und bezieht dabei auch den Arbeitsspeicher mit ein. Ein schnellerer Arbeitsspeicher kann das Ergebnis stark verbessern. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Der Geekbench 5 Benchmark misst die Leistung des Prozessors und bezieht dabei auch den Arbeitsspeicher mit ein. Ein schnellerer Arbeitsspeicher kann das Ergebnis stark verbessern. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Cinebench R20 ist die Weiterentwicklung von Cinebench R15 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R20 ist die Weiterentwicklung von Cinebench R15 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Nicht alle der hier aufgelisteten Prozessoren wurden von uns getestet. Einige der Ergebnisse wurden basierend auf einer Formel errechnet und können von Passmark CPU mark Ergebnissen abweichen und sind unabhängig von PassMark Software Pty Ltd. Der PassMark CPU Mark generiert Primzahlen um die Geschwindigkeit eines Prozessors zu messen. Hierbei werden alle CPU-Kerne sowie Hyperthreading genutzt.
Cinebench R15 ist die Weiterentwicklung von Cinebench 11.5 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R15 ist die Weiterentwicklung von Cinebench 11.5 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Cinebench R23 ist die Weiterentwicklung von Cinebench R20 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Im praxisnahen Geekbench 6 Mehrkern Benchmark wird die Leistung des Systems bei Teillast getestet. Die maximale Energieaufnahme des Prozessors wird bei weitem nicht ausgeschöpft.