In diesem CPU-Vergleich stellen wir den Intel Core i5-13400F und den Intel Core i5-12600KF gegenüber und prüfen anhand von Benchmarks, welcher Prozessor schneller ist.
Wir vergleichen den Intel Core i5-13400F 10-Kern Prozessor der im Q1/2023 erschienen ist mit dem Intel Core i5-12600KF, welcher 10 CPU-Kerne besitzt und im Q4/2021 vorgestellt wurde.
Der Intel Core i5-13400F ist ein 10-Kern Prozessor mit einer Taktfrequenz von 2,50 GHz (4,60 GHz). Der Prozessor kann zeitgleich 16 Threads berechnen. Der Intel Core i5-12600KF taktet mit 3,70 GHz (4,90 GHz), besitzt 10 CPU-Kerne und kann parallel 16 Threads berechnen.
Die Leistungswerte der KI-Einheit des Prozessors. Es wird hier die isolierte NPU Leistung angegeben, die gesamte KI-Leistung (NPU+CPU+iGPU) kann höher sein. Prozessoren mit Unterstützung von künstlicher Intelligenz (KI) und maschinellem Lernen (ML) können viele Berechnungen insbesondere der Audio-, Bild- und Videoverarbeitung sehr viel schneller verarbeiten als klassische Prozessoren.
Eine in den Prozessor integrierte Grafik (iGPU) ermöglicht nicht nur die Bildausgabe ohne auf eine dedizierte Grafiklösung angewiesen zu sein, sondern kann auch die Videowiedergabe effizient beschleunigen.
keine interne Grafik
GPU
keine interne Grafik
Grafik-Taktfrequenz
--
--
GPU (Turbo)
--
--
GPU Generation
--
Technologie
Max. Bildschirme
--
Ausführungseinheiten
--
--
Shader
--
Nein
Hardware Raytracing
Nein
Nein
Frame Generation
Nein
--
Max. GPU Speicher
--
--
DirectX Version
--
Codec-Unterstützung in Hardware
Ein in Hardware beschleunigter Foto- oder Videocodec kann die Arbeitsgeschwindigkeit eines Prozessors stark beschleunigen und die Akkulaufzeit von Notebooks oder Smartphones bei der Wiedergabe von Videos verlängern.
keine interne Grafik
GPU
keine interne Grafik
Nein
Codec h265 / HEVC (8 bit)
Nein
Nein
Codec h265 / HEVC (10 bit)
Nein
Nein
Codec h264
Nein
Nein
Codec VP9
Nein
Nein
Codec VP8
Nein
Nein
Codec AV1
Nein
Nein
Codec AVC
Nein
Nein
Codec VC-1
Nein
Nein
Codec JPEG
Nein
Arbeitsspeicher & PCIe
Bis zu 128 GB Arbeitsspeicher in maximal 2 Speicherkanälen werden vom Intel Core i5-13400F unterstützt, während der Intel Core i5-12600KF maximal 128 GB Arbeitsspeicher mit einer maximalen Speicherbandbreite von 76,8 GB/s ermöglicht.
Der Intel Core i5-13400F besitzt eine TDP von 65 W. Die TDP des Intel Core i5-12600KF liegt bei 125 W. Systemintegratoren orientieren sich bei der Dimensionierung der Kühllösung an der TDP des Prozessors.
Der Intel Core i5-13400F besitzt 29,50 MB Cache und wird in 10 nm hergestellt. Der Cache des Intel Core i5-12600KF liegt bei 29,50 MB. Der Prozessor wird in 10 nm gefertigt.
Hier kannst Du den Intel Core i5-13400F bewerten, um anderen Besuchern bei ihrer Kaufentscheidung zu helfen. Die durchschnittliche Bewertung liegt bei 4,2 Sternen (83 Bewertungen). Jetzt bewerten:
Hier kannst Du den Intel Core i5-12600KF bewerten, um anderen Besuchern bei ihrer Kaufentscheidung zu helfen. Die durchschnittliche Bewertung liegt bei 4,3 Sternen (113 Bewertungen). Jetzt bewerten:
Durchschnittliche Leistung in Benchmarks
⌀ Einkern Leistung in 7 CPU Benchmarks
Intel Core i5-13400F (93%)
Intel Core i5-12600KF (100%)
⌀ Mehrkern Leistung in 8 CPU Benchmarks
Intel Core i5-13400F (91%)
Intel Core i5-12600KF (99%)
Preis-Leistungsverhältnis
Unter Berücksichtigung des Geekbench 6 Mehrkern Ergebnisses geteilt durch den Erscheinungspreis des Prozessors. Höher ist besser.
Der Cinebench 2024 Benchmark basiert auf der Redshift-Rendering Engine die auch im 3D-Programm Cinema 4D des Herstellers Maxon zum Einsatz kommt. Die Benchmark-Durchläufe sind je 10 Minuten lang um zu Testen ob der Prozessor durch seine Wärmeentwicklung limitiert wird.
Der Mehrkern-Test des Cinebench 2024-Benchmarks nutzt alle CPU-Kerne zum Rendern mit der Redshift-Rendering-Engine, die auch in Maxons Cinema 4D zum Einsatz kommt. Der Benchmark-Lauf dauert 10 Minuten, um zu testen, ob der Prozessor durch seine Wärmeentwicklung eingeschränkt wird.
Cinebench R23 ist die Weiterentwicklung von Cinebench R20 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R23 ist die Weiterentwicklung von Cinebench R20 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Geekbench 6 ist ein Teillast-Benchmark für moderne Computer, Notebooks und Smartphones. Im Einkern-Test wird nur der schnellste CPU-Kern gemessen. Der Testdurchlauf simuliert die Leistung in der Praxis.
Im praxisnahen Geekbench 6 Mehrkern Benchmark wird die Leistung des Systems bei Teillast getestet. Die maximale Energieaufnahme des Prozessors wird bei weitem nicht ausgeschöpft.
Der Geekbench 5 Benchmark misst die Leistung des Prozessors und bezieht dabei auch den Arbeitsspeicher mit ein. Ein schnellerer Arbeitsspeicher kann das Ergebnis stark verbessern. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Der Geekbench 5 Benchmark misst die Leistung des Prozessors und bezieht dabei auch den Arbeitsspeicher mit ein. Ein schnellerer Arbeitsspeicher kann das Ergebnis stark verbessern. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Cinebench R20 ist die Weiterentwicklung von Cinebench R15 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R20 ist die Weiterentwicklung von Cinebench R15 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Nicht alle der hier aufgelisteten Prozessoren wurden von uns getestet. Einige der Ergebnisse wurden basierend auf einer Formel errechnet und können von Passmark CPU mark Ergebnissen abweichen und sind unabhängig von PassMark Software Pty Ltd. Der PassMark CPU Mark generiert Primzahlen um die Geschwindigkeit eines Prozessors zu messen. Hierbei werden alle CPU-Kerne sowie Hyperthreading genutzt.
Der CPU-Z Benchmark misst die Leistung eines Prozessors, indem die Zeit gemessen wir die das System benötigt um alle Benchmark-Berechnungen durchzuführen. Je schneller der Benchmark abgeschlossen wird, desto höher die Punktzahl.
Der CPU-Z Benchmark misst die Leistung eines Prozessors, indem die Zeit gemessen wir die das System benötigt um alle Benchmark-Berechnungen durchzuführen. Je schneller der Benchmark abgeschlossen wird, desto höher die Punktzahl.
Cinebench R15 ist die Weiterentwicklung von Cinebench 11.5 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R15 ist die Weiterentwicklung von Cinebench 11.5 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Effizienz des Prozessors unter voller Auslastung im Cinebench R23 (Mehrkern) Benchmark. Die erreichte Punktzahl wird durch die durchschnittlich benötigte Energie (CPU Package Power in Watt) geteilt. Je höher der Wert, desto effizienter ist die CPU unter Volllast.
Im Blender Benchmark 3.1 werden die Szenen "monster", "junkshop" sowie "classroom" gerendert und die von dem System benötigte Zeit gemessen. In unserem Benchmark testen wir die CPU und nicht die Grafikkarte. Blender 3.1 wurde im März 2022 als eigenständige Version vorgestellt.
Intel Core i5-13400F - Beschreibung des Prozessors
Der Intel Core i5-13400F ist ein 10-Kern Prozessor der oberen Mittelklasse von Intels Desktop-Prozessoren der 13. Generation (Raptor Lake S). Seine zehn Kerne nutzen ein hybrides Layout und setzen sich aus 6 starken P-Kernen (Raptor Cove) sowie 4 kleineren und sehr sparsamen E-Kernen (Gracemont) zusammen. Letztere entstammen Intels Atom-Serie und arbeiten sehr sparsam. Sie übernehmen häufig Hintergrundaufgaben, können aber auch im Verbund mit den größeren P-Kernen rechnen.
Die stärkeren P-Kerne (Raptor Cove) sind nur eine kleine Weiterentwicklung des Vorgängers und werden immer noch im Intel 7 (optimiertes 10 nm) Verfahren gefertigt. Zusammen können die 10 Kerne des Intel Core i5-13400F bis zu 16 Threads gleichzeitig verarbeiten.
Die Taktfrequenz des Intel Core i5-13400F liegt bei den P-Kernen bei 2,5 GHz. Diese können im Turbo-Modus mit bis zu 4,6 GHz takten. Die E-Kerne besitzen eine Taktfrequenz von 2,5 GHz und können maximal bis zu 3,3 GHz erreichen.
Der Prozessor unterstützt DDR5 Arbeitsspeicher mit einer Kapazität von bis zu 128 GB in zwei Kanälen (Dual-Channel). Auch der neue PCIe 5.0 Standard wird bereits unterstützt. Hier können in der Zukunft schnelle Grafikkarten und M.2 SSDs angebunden werden.
Die TDP des Intel Core i5-13400F liegt bei 65 Watt, kurzfristig kann der Prozessor aber bis zu 117 Watt an Energie aufnehmen. Intel fertigt seine Raptor-Lake Prozessoren immer noch in einem monolitischen Design, d.h. die Prozessoren werden in einem Stück gefertigt. Dies ist technisch einfacher zu lösen, bringt aber den Nachteil mit, dass bei einem Fehler in der Produktion der Prozessor ggf. nicht mehr genutzt werden kann oder als kleinerer Prozessor teildeaktiviert ausgeliefert wird.
Mit der 14. Generation der Intel Core i Prozessoren, die für Ende 2023 erwartet wird und auf den Namen Meteor Lake hört, möchte Intel in der Fertigung auf ein Chiplet Design umstellen, so wie es AMD und Apple schon seit längerer Zeit benutzen.
Intel Core i5-12600KF - Beschreibung des Prozessors
Der Intel Core i5-12600KF ist ein Desktop-Prozessor der zwölften Generation aus dem Hause Intel. Er wurde im vierten Quartal des Jahres 2021 veröffentlicht und basiert auf dem Intel Sockel LGA 1700. Er basiert auf der Alder Lake S - Architektur und die Fertigung erfolgt in eine Strukturbreite von 10 Nanometern. Es werden die ISA-Erweiterungen SSE4.1, SSE4.2, AVX2, AVX2+ und die Virtualisierungstechnologien VT-x, VT-x EPT, VT-d unterstützt.
Der Prozessor basiert auf eine hybriden Kernarchitektur (big.LITTLE) in der in diesem Fall neben 6 Performance-Kernen noch 4 Effizienz-Kerne zum Einsatz kommen. Die Performance-Kerne (Golden Cove) unterstützen Hyperthreading, haben eine Grundtaktfrequenz von 3,70 Gigahertz und können den Takt im Turbomodus auf bis zu 4,90 Gigahertz erhöhen. Die Effizienz-Kerne (Gracemont) kommen dann zum Einsatz wenn keine Leistung benötigt wird, womit diese zu einem effizienteren Stromverbrauch beitragen. Die Kerne unterstützen kein Hyperthreading und sowohl die Grundtaktfrequenz, mit 2,80 Gigahertz, als auch der maximale Turbotakt, mit 3,60 Gigahertz, ist deutlich niedriger als bei den Performance-Kernen. An dem "K" in der Prozessorbezeichnung kann zudem ablesen, dass der Prozessor einen freien Multiplikator besitzt und somit mit einer geeigneten Kühlung übertaktet werden kann.
Der zweite Buchstabe, "F", im Namen des Prozessor zeigt, dass der Intel Core i5-12600KF keine interne Grafikeinheit besitzt und somit ausschließlich mit einer dedizierten Grafiklösung (z.B. NVIDIA GeForce, AMD Radeon) betrieben werden kann. Um diese anzubinden stehen dem Prozessor 20 PCI-Express-Leitungen in der Version 5.0 zur Verfügung.
Der Intel Core i5-12600KF besitzt 2 Speicherkanäle über die bis zu 128 Gigabyte Arbeitsspeicher angebunden werden können. Hier kann man zwischen dem etwas älteren DDR4-3200 und dem neuen DDR5-4800 wählen. Die maximale Bandbreite dieser Speicheranbindung liegt bei 76,8 GB/s.