Intel Core i5-12400 oder AMD Ryzen 7 5700G - welcher Prozessor ist schneller ? In diesem Vergleich betrachten wir die Unterschiede und analysieren welche dieser beiden CPUs besser ist. Dabei vergleichen wir die technischen Daten und Benchmark-Ergebnisse.
Der Intel Core i5-12400 besitzt 6 Kerne mit 12 Threads und taktet mit maximal 4,40 GHz. Es werden bis zu 128 GB Arbeitsspeicher in 2 Speicherkanälen unterstützt. Erschienen ist der Intel Core i5-12400 im Q1/2022.
Der AMD Ryzen 7 5700G besitzt 8 Kerne mit 16 Threads und taktet mit maximal 4,60 GHz. Die CPU unterstützt bis zu 64 GB Arbeitsspeicher in 2 Speicherkanälen. Erschienen ist der AMD Ryzen 7 5700G im Q2/2021.
Der Intel Core i5-12400 besitzt 6 CPU-Kerne und kann 12 Threads parallel berechnen. Die Taktfrequenz des Intel Core i5-12400 liegt bei 2,50 GHz (4,40 GHz) während der AMD Ryzen 7 5700G 8 CPU-Kerne besitzt und 16 Threads gleichzeitig berechnen kann. Die Taktfrequenz des AMD Ryzen 7 5700G liegt bei --.
6
Kerne
8
12
Threads
16
normal
Kernarchitektur
normal
Ja
Hyperthreading
Ja
Nein
Übertaktbar ?
Ja
2,50 GHz
Taktfrequenz
3,80 GHz
4,40 GHz
Turbo Taktfrequenz (1 Kern)
4,60 GHz
4,00 GHz
Turbo Taktfrequenz (Alle Kerne)
4,20 GHz
Künstliche Intelligenz und Maschinelles Lernen
Prozessoren mit Unterstützung von künstlicher Intelligenz (KI) und maschinellem Lernen (ML) können viele Berechnungen insbesondere der Audio-, Bild- und Videoverarbeitung sehr viel schneller verarbeiten als klassische Prozessoren. Algorithmen für ML verbessern ihre Leistung je mehr Daten sie per Software gesammelt haben. ML-Aufgaben können bis zu 10.000 Mal so schnell verarbeitet werden wie mit einem klassischen Prozessor.
--
KI-Hardware
--
--
KI-Spezifikationen
--
Interne Grafik
Der Intel Core i5-12400 oder AMD Ryzen 7 5700G verfügt über eine integrierte Grafik, kurz iGPU genannt. Die iGPU nutzt den Arbeitsspeicher des Systems als Grafikspeicher und sitzt auf dem Die des Prozessors.
Ein in Hardware beschleunigter Foto- oder Videocodec kann die Arbeitsgeschwindigkeit eines Prozessors stark beschleunigen und die Akkulaufzeit von Notebooks oder Smartphones bei der Wiedergabe von Videos verlängern.
Dekodieren / Enkodieren
Codec h265 / HEVC (8 bit)
Dekodieren / Enkodieren
Dekodieren / Enkodieren
Codec h265 / HEVC (10 bit)
Dekodieren / Enkodieren
Dekodieren / Enkodieren
Codec h264
Dekodieren / Enkodieren
Dekodieren / Enkodieren
Codec VP9
Dekodieren / Enkodieren
Dekodieren / Enkodieren
Codec VP8
Dekodieren / Enkodieren
Dekodieren
Codec AV1
Nein
Dekodieren / Enkodieren
Codec AVC
Dekodieren / Enkodieren
Dekodieren
Codec VC-1
Dekodieren
Dekodieren / Enkodieren
Codec JPEG
Dekodieren / Enkodieren
Arbeitsspeicher & PCIe
Der Intel Core i5-12400 kann bis zu 128 GB Arbeitsspeicher in 2 Speicherkanälen nutzen. Die maximale Speicherbandbreite liegt bei 76,8 GB/s. Bis zu 64 GB Arbeitsspeicher unterstützt der AMD Ryzen 7 5700G in 2 Speicherkanälen und erreicht eine Speicherbandbreite von bis zu 51,2 GB/s.
DDR4-3200, DDR5-4800
Arbeitsspeicher
DDR4-3200
128 GB
Max. Speicher
64 GB
2 (Dual Channel)
Speicherkanäle
2 (Dual Channel)
76,8 GB/s
Bandbreite
51,2 GB/s
Nein
ECC
Nein
7,50 MB
L2 Cache
4,00 MB
18,00 MB
L3 Cache
16,00 MB
5.0
PCIe Version
3.0
20
PCIe Leitungen
20
Leistungsaufnahme
Die Thermal Design Power (kurz TDP) des Intel Core i5-12400 liegt bei 65 W, während der AMD Ryzen 7 5700G eine TDP von 65 W besitzt. Die TDP gibt die notwendige Kühllösung vor, die benötigt wird um den Prozessor ausreichend zu kühlen.
65 W
TDP (PL1 / PBP)
65 W
117 W
TDP (PL2)
--
--
TDP up
--
--
TDP down
45 W
100 °C
Tjunction max.
95 °C
Technische Daten
Der Intel Core i5-12400 wird in 10 nm gefertigt und verfügt über 25,50 MB Cache. Der AMD Ryzen 7 5700G wird in 7 nm gefertigt und verfügt über einen 25,50 MB großen Cache.
Cinebench R23 ist die Weiterentwicklung von Cinebench R20 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R23 ist die Weiterentwicklung von Cinebench R20 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Cinebench R20 ist die Weiterentwicklung von Cinebench R15 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R20 ist die Weiterentwicklung von Cinebench R15 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Geekbench 6 ist ein Benchmark für moderne Computer, Notebooks und Smartphones. Neu ist eine optimierte Auslastung neuerer CPU-Architekturen die z.B. auf das big.LITTLE Konzept aufbauen und unterschiedlich große CPU-Kerne miteinander kombinieren. Der Einkern-Benchmark bewertet nur die Leistung des schnellsten CPU-Kerns, die Anzahl der CPU-Kerne eines Prozessors spielt hier keine Rolle.
Geekbench 6 ist ein Benchmark für moderne Computer, Notebooks und Smartphones. Neu ist eine optimierte Auslastung neuerer CPU-Architekturen die z.B. auf das big.LITTLE Konzept aufbauen und unterschiedlich große CPU-Kerne miteinander kombinieren. Der Mehrkern-Benchmark bewertet die Leistung aller CPU-Kerne des Prozessors. Virtuelle Threadverbesserungen wie die AMD SMT oder Intels Hyper-Threading haben einen positiven Einfluss auf das Benchmark-Ergebnis.
Der Geekbench 5 Benchmark misst die Leistung des Prozessors und bezieht dabei auch den Arbeitsspeicher mit ein. Ein schnellerer Arbeitsspeicher kann das Ergebnis stark verbessern. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Der Geekbench 5 Benchmark misst die Leistung des Prozessors und bezieht dabei auch den Arbeitsspeicher mit ein. Ein schnellerer Arbeitsspeicher kann das Ergebnis stark verbessern. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Die theoretische Rechenleistung der internen Grafikeinheit des Prozessors bei einfacher Genauigkeit (32 bit) in GFLOPS. GFLOPS gibt an, wie viele Milliarden Gleitkommaoperationen die iGPU pro Sekunde durchführen kann.
Im Blender Benchmark 3.1 werden die Szenen "monster", "junkshop" sowie "classroom" gerendert und die von dem System benötigte Zeit gemessen. In unserem Benchmark testen wir die CPU und nicht die Grafikkarte. Blender 3.1 wurde im März 2022 als eigenständige Version vorgestellt.
Nicht alle der hier aufgelisteten Prozessoren wurden von uns getestet. Einige der Ergebnisse wurden basierend auf einer Formel errechnet und können von Passmark CPU mark Ergebnissen abweichen und sind unabhängig von PassMark Software Pty Ltd. Der PassMark CPU Mark generiert Primzahlen um die Geschwindigkeit eines Prozessors zu messen. Hierbei werden alle CPU-Kerne sowie Hyperthreading genutzt.
Der CPU-Z Benchmark misst die Leistung eines Prozessors, indem die Zeit gemessen wir die das System benötigt um alle Benchmark-Berechnungen durchzuführen. Je schneller der Benchmark abgeschlossen wird, desto höher die Punktzahl.
Der CPU-Z Benchmark misst die Leistung eines Prozessors, indem die Zeit gemessen wir die das System benötigt um alle Benchmark-Berechnungen durchzuführen. Je schneller der Benchmark abgeschlossen wird, desto höher die Punktzahl.
V-Ray ist eine 3D-Render Software des Herstellers Chaos für Designer und Künster. Anders als viele andere Render-Engines beherrscht V-Ray das so genannte Hybrid-Rendering, bei dem gleichzeitig CPU und GPU zusammen arbeiten.
Der bei uns eingesetzte CPU-Benchmark (CPU Render Mode) nutzt allerdings ausschließlich den Prozessor des Systems. Der verwendete Arbeitsspeicher spielt eine große Rolle im V-Ray Benchmark. Für unsere Benchmarks nutzen wir den schnellsten vom Hersteller zugelassenen RAM-Standard (ohne Übertaktung).
Durch die hohe Kompatibilität von V-Ray (unter anderem zu Autodesk 3ds Max, Maya, Cinema 4D, SketchUp, Unreal Engine und Blender) ist es eine häufig eingesetzte Software. Mit V-Ray lassen sich z.B. fotorealistische Bilder rendern, die von Laien nicht von normalen Fotos zu unterscheiden sind.
Cinebench R15 ist die Weiterentwicklung von Cinebench 11.5 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Single-Core Test nutzt nur einen CPU-Kern, die Anzahl der Kerne sowie Hyperthreading beeinflussen das Ergebnis nicht.
Cinebench R15 ist die Weiterentwicklung von Cinebench 11.5 und basiert ebenso auf der Cinema 4D Suite, einem weltweit eingesetzten Programm, das benutzt wird um 3D-Inhalte und Formen zu generieren. Der Multi-Core Test bezieht alle CPU-Kerne mit ein und zieht einen großen Nutzen aus Hyperthreading.
Der Intel Core i5-12400 ist ein 6-Kern Prozessor für Mainstream-Anwendungen. Im Gegensatz zu seinen größeren Brüdern nutz der Intel Core i5-12400 eine klassische CPU-Kernverteilung (6x Golden Cove Performance-Kerne). Die größeren Ausbaustufen wie z.B. der Intel Core i5-12600K haben von Intel in einem hybriden Kernaufbau noch zusätzliche Effizienz-Kerne spendiert bekommen. Diese werden dem Intel Core i5-12400 leider vorenthalten.
Dafür hat Intel auch die TDP deutlich reduziert: während der Intel Core i5-12600K bis zu 125 Watt (kurzzeitig sogar 150 Watt) aufnehmen darf, nutzt der Intel Core i5-12400 eine TDP von nur 65 Watt. Diese kann über eine kurze Zeitspanne auf 117 Watt erhöht werden.
Trotzdem kann der Intel Core i5-12400 in der 12. Generation überzeugen. Durch die Nutzung des neuen DDR5-Speicherstandards (offiziell wird bis zu DDR5-4800 unterstützt) und der Fertigung im "Intel 10" Verfahren (vergleichbar mit TSMCs 7 nm Fertigung, die aktuell in den AMD Ryzen 5000 Prozessoren genutzt wird) ist der Chip einigermaßen sparsam und gleichzeitig flott unterwegs.
Die neue Alder-Lake S Architektur nutzt den Sockel LGA 1700 und kann neben DDR5-Arbeitsspeicher auch Grafikkarten mit bis zu PCIe 5.0 (doppelte Bandbreite im Vergleich zur Vorgängergeneration 4.0) anbinden. Bisher unterstützen allerdings noch keine Grafikkarten das neue PCIe 5.0 Interface. Es ist aber natürlich abwärtskompatibel.
Den DDR5-Arbeitsspeicher kann der Intel Core i5-12400 per XMP-Profil auf Wunsch auch schneller ansprechen. Neu ist hier das XMP 3.0 Profil von Intel, was mehr Flexibilität bei der Übertaktung von Arbeitsspeicher bietet. Bis zu 128 GB Arbeitsspeicher darf die neue Alder-Lake S Plattform ansprechen, dabei erreicht ein System im Maximalausbau mit 2x 64 GB Speicherriegeln eine maximale Speicherbandbreite von 76,8 GB pro Sekunde.
AMD Ryzen 7 5700G - Beschreibung des Prozessors
Der AMD Ryzen 7 5700G ist ein 8-Kern Prozessor aus dem Hause AMD. Er basiert auf der AMD "Cezanne" APU-Architektur, die vorwiegend in Mobilgeräten eingesetzt wird und anders als die normalen AMD Ryzen Desktop Prozessoren über eine interne Grafikeinheit (iGPU) verfügt. Bei der AMD "Cezanne" Architektur werden Zen 3 CPU-Kerne mit einer AMD Vega Grafik auf einen Chip untergebracht. Dadurch fällt der Level 3 Cache kleiner aus, da der Chip sonst zu groß und teuer werden würde. Die "Cezanne" APUs besitzen aber einen doppelt so großen Cache wie ihre Vorgänger der AMD "Renoir" Architektur, konkret besitzt der AMD Ryzen 7 5700G nun 16 statt 8 MB.
Seine acht CPU-Kerne kann der AMD Ryzen 7 5700G mit bis zu 4,5 GHz Takten, sofern nur ein CPU-Kern ausgelastet wird. Werden alle CPU-Kerne belastet, sind noch 4,2 GHz möglich. Der Basistakt liegt bei recht hohen 3,6 GHz. Der AMD Ryzen 7 5700G ermöglicht es, kleine und dennoch schnelle Desktop-Systeme zu bauen, wobei sich z.B. das ASRock DeskMini Gehäuse als Basis für das System anbietet.
Die interne Grafik des AMD Ryzen 7 5700G basiert auf dem Vorgänger Design mit leicht verbesserten Taktfrequenzen. Die Grafik erreicht in etwa 2,1 TFLOPs an FP32-Rohrechenleistung und reicht aus um mittelmäßig anspruchsvolle Spiele in Full-HD (1080p) Auflösung zu spielen. Auch für die Video- und Fotobearbeitung ist die AMD Vega 8 Graphics ausreichend. Allerdings wird der neue und freie Videocodec AV1 noch nicht via Hardware beschleunigt. Sowohl der neue Apple M1 Prozessor als auch die neuen Intel Tiger Lake mit Intel XE Grafik geben Videos, die mit dem neuen Codec AV1 erstellt worden sind, bereits via Hardware wieder. Dies verbessert die Energieeffizienz und bei Mobilgeräten auch die Akkuleistung.
Der AMD Ryzen 7 5700G ist mit einer TDP von 65 Watt spezifiziert. Dies ist auch durch die verbesserte 7 nm Fertigung möglich. AMD lässt seine aktuellen Prozessoren bei TSMC fertigen.
Bestenlisten
In unseren Bestenlisten haben wir die jeweils besten Prozessoren für bestimmte Kategorien übersichtlich für euch gesammelt. Die Bestenlisten sind immer aktuell und werden regelmäßig durch uns aktualisiert. Die jeweils besten Prozessoren werden dabei nach Beliebtheit und Geschwindigkeit in Benchmarks sowie dem Preis-Leistungs-Verhältnis ausgewählt.